Some divisibility properties of binomial coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Divisibility concerning Binomial Coefficients

Binomial coefficients arise naturally in combinatorics. Recently the speaker initiated the study of certain divisibility properties of binomial coefficients, and products or sums of binomial coefficients. In this talk we introduce the speaker’s related results and various conjectures. The materials come from the author’s two preprints: 1. Z. W. Sun, Products and sums divisible by central binomi...

متن کامل

On Divisibility Properties of Some Differences of the Central Binomial Coefficients and Catalan Numbers

We discuss divisibility properties of some differences of the central binomial coefficients and Catalan numbers. The main tool is the application of various congruences modulo high prime powers for binomial coefficients combined with some recurrence relevant to these combinatorial quantities.

متن کامل

Some Divisibility Properties of Binomial Coefficients and the Converse of Wolstenholme’s Theorem

We show that the set of composite positive integers n ≤ x satisfying the congruence (2n−1 n−1 ) ≡ 1 (mod n) is of cardinality at most x exp ( −(1/ √ 2 + o(1)) √ log x log log x ) as x →∞.

متن کامل

Some Congruence Properties of Binomial Coefficients

Using elementary methods, the following results are obtalned:(1) If p is n n-m prime, 0 m n, 0 < b < ap n-m, and p ab, then (m) (-I)P-I(apb (rood pn). 2 A2_4B If r,s are the roots of x Ax-B, where (A,B) and D > 0, if n n u v rn+s n, and k > O, then (II) v =v (rood pn). n r-s n kpn kpn-1 (III) If p is odd and p D, then u (_D) u (rood pn); kp n P kp n-I (IV) u (_1)Bu n) n n-I (rood 2 k2 k2

متن کامل

On Divisibility of Convolutions of Central Binomial Coefficients

Recently, Z. Sun proved that 2 (2m + 1) ( 2m m ) | ( 6m 3m )( 3m m ) for m ∈ Z>0. In this paper, we consider a generalization of this result by defining bn,k = 2k (n + 2k − 2)!! (n− 2)!! k! . In this notation, Sun’s result may be expressed as 2 (2m + 1) | b(2m+1),(2m+1)−1 for m ∈ Z>0. In this paper, we prove that 2n | bn,un±2r for n ∈ Z>0 and u, r ∈ Z>0 with un ± 2r > 0. In addition, we prove a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2018

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2017.08.005